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1 Introduction
In a distant-talking environment, channel distortion drastically degrades speech recognition performance because

of mismatches between the training and test environments. The current approaches focusing on robustness issues

for automatic speech recognition (ASR) in noisy reverberant environments can be classified as speech enhancement,

robust feature extraction, or model adaptation methods.

In this paper, we focus on speech enhancement in a distant-talking environment. Previously, Wang et al. [1]

proposed a robust distant-talking speech recognition method based on power spectral subtraction (SS) employing the

adaptive multi-channel least mean squares (MCLMS) algorithm. In their study, late reverberation was treated as

additive noise, and a noise reduction technique based on power SS was proposed to estimate the power spectrum

of clean speech using an estimated power spectrum of the impulse response. To estimate the power spectra of the

impulse responses, they extended the MCLMS algorithm for identifying impulse responses in a time domain [2] to

a frequency domain. We proposed a blind dereverberation method based on generalized SS (GSS), which has been

shown to be effective for noise reduction, instead of power SS [3]. The dereverberation method based on GSS with

beamforming achieved a relative word error reduction rate of 9.8% and 31.4% compared to the dereverberation method

based on power SS with beamforming and the conventional cepstral mean normalization (CMN) with beamforming,

respectively. However, both the power SS-based method [1] and GSS-based method [3] were evaluated in a simulated

reverberant environment without additive noise.

In this paper, we evaluate the blind dereverberation methods in a real noisy reverberant environment with stationary

noise or non-stationary noise. To suppress the stationary noise and non-stationary noise, we use a noise reduction

technique based on GSS and a blind source separation based on independent component analysis (ICA), respectively.

FastICA is one of the most popular algorithm for ICA. Our experimental result shows that combining the Efficient

FastICA (EFICA) [4], which is an improved version of FastICA, is effective for our dereverberation method [6].

2 Outline of Dereverberation
The schematic diagram of our dereverberation method is shown in Fig. 1. The late reverberation are reduced

from the spectrum of multi-channel distorted speech by our dereverberation method using the estimated spectrum of

impulse response. Thereafter, the early reverberation is normalized by CMN at the feature extraction stage.

2.1 Dereverberation based on GSS

If speech s[t] is corrupted by convolutional noise h[t], the observed speech x[t] becomes x[t] = h[t] ∗ s[t], where *

denotes the convolution operation. If the length of the impulse response is much smaller than the analysis window

length T used in the short-time Fourier transform (STFT), the STFT of the distorted speech equals that of the clean

speech multiplied by the STFT of the impulse response h[t]. However, if the length of the impulse response is much

greater than the analysis window size, the STFT of the distorted speech is usually approximated by

X(τ, ω) ≈ S(τ, ω)H(0, ω) +
D−1∑
d=1

S(τ − d, ω)H(d, ω), (1)

where τ is the frame index, H(ω) is the STFT of the impulse response, S(τ, ω) is the STFT of the clean speech s, D

is the number of reverberation windows, and H(d, ω) denotes the part of H(ω) corresponding to the frame delay d.

In [3], we proposed a dereverberation method based on GSS to estimate the STFT of the clean speech Ŝ(τ, ω) based

on Eq. (1). To estimate the spectrum of the impulse response for the GSS, they extended the MCLMS algorithm for

identifying the impulse responses in a time domain to a frequency domain. The estimated spectrum of clean speech

may not be very accurate due to the estimation error of the impulse response, especially the estimation error of early

part of the impulse response. In addition, the unreliable estimated spectra in previous frames cause a furthermore
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Fig 1: Schematic diagram of our dereverberation method

estimation error in the current frame. In this paper, the late reverberation is reduced based on the GSS, while the

early reverberation is normalized by CMN at the feature extraction stage.

Assuming that the phases of different frames are non-correlated for the sake of simplicity, the estimated spectrum

X̂(τ, ω) obtained by reducing the late reverberation then becomes

|X̂(τ, ω)|2n ≈ max

{
|X(τ, ω)|2n − α ·

∑D−1
d=1 {|X̂(τ − d, ω)|2n|Ĥ(d, ω)|2n}

|Ĥ(0, ω)|2n
, β · |X(τ, ω)|2n

}
, (2)

where |X̂(τ, ω)|2n = |Ŝ(τ, ω)|2n|Ĥ(0, ω)|2n, Ŝ(τ, ω) is the spectrum of estimated clean speech, Ĥ(τ, ω) is the STFT

of the impulse response obtained by frequency domain MCLMS algorithm in sec. 2.2, α is the noise over estimation

factor, β is the spectral floor parameter to avoid negative or under flow values, and n is the exponent parameter,

respectively.

2.2 Blind Estimation of Impulse Responses

In this section, we explain about blind estimation of the spectra of impulse response Ĥ(d, ω) using Eq. (2). In [2],

MCLMS in a time domain was proposed to blindly estimate the impulse responses of each channel. In this paper, we

used a variable step-size unconstrained MCLMS (VSS-UMCLMS) algorithm extended in a time-domain to a frequency

domain.

In the absence of additive noise, we have the following relation of correlation matrix and impulse response.

RXiXi(τ + 1)Hj(τ) = RXiXj (τ + 1)Hi(τ)i, j = 1, 2, · · · , N, i ̸= j, (3)

where

RXiXj (τ) = E[Xi(τ)X
T
j (τ)], (4)

Xi(τ) = [Xi(τ), Xi(τ − 1), · · · , Xi(τ −D + 1)]T , (5)

Hi(τ) = [Hi(τ, 0), · · · ,Hi(τ, d), · · · ,Hi(τ,D − 1)]T , (6)

i is the channel number, Xi(τ) is the spectrum of observed signal at frame τ , Hi(τ) is the spectrum of impulse response

at frame τ , Hi(τ, d) is the spectrum of impulse response at frame τ corresponding to the frame delay d.

Over all channels, we have written as Eq. (7) which transposed the right side and got together of Eq. (5).

RX+(τ + 1)H(τ) = 0, (7)

where

RX+(τ) =


∑

i ̸=1 RXiXi(τ) −RX2X1(τ) · · · −RXNX1(τ)
−RX1X2(τ)

∑
i ̸=2 RXiXi(τ) · · · −RXNX2(τ)

...
...

. . .
...

−RX1XN
(τ) −RX2XN

(τ) · · ·
∑

i ̸=N RXiXi(τ)

 , (8)

H(τ) = [H1(τ)
T ,H2(τ)

T , · · · ,HN (τ)T ]T . (9)

Eq. (7) consists of using true impulse response in the absence of additive noise. When additive noise is presented

or the estimated impulse response is used, however, the estimation error is observed like Eq. (10).

R̃X+(τ + 1)Ĥ(τ) = E(τ + 1), (10)

where R̃X+ is the matrix of Eq .(9) calculated using noisy observed signal, E is the estimation error. Ĥ is adaptively

trained by minimizing the cost function obtained from the estimation error. The learning equation by unconstrained

MCLMS is following as

Ĥ(τ + 1) = Ĥ(τ)− 2µR̃X+(τ + 1)Ĥ(τ), (11)

where µ is the step-size. Multi-channel impulse responses can estimate by updating Eq. (11).
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VSS-UMCLMS is the algorithm to determine the step-size µ of Eq. (11). The step-size µ is automatically updated

like Eq. (12).

µopt(τ + 1) =
ĤT (τ)∆J(τ + 1)

||∆J(τ + 1)||2
, (12)

where

∆J(τ + 1) ≈ 2R̃X+(τ + 1)Ĥ(τ)

||Ĥ(τ)||2
. (13)

The spectra of impulse responses Ĥ are blindly estimated using this VSS-UMCLMS.

3 Experiments
3.1 Evaluation data

A. Real reverberant speech with stationary noise

To evaluate our dereverberation method in a real environment with stationary noise, we recorded multi-channel

speech degraded simultaneously by stationary noise and reverberation. Table 1 gives the conditions and content of the

recordings. One hundred utterances from the Japanese Newspaper Article Sentences (JNAS) corpus, uttered by five

male speakers seated on the chairs labeled A to E in Fig. 2, were recorded by a multi-channel recording device. The

heights of the microphone array and the utterance position of each speaker were about 0.8 m and 1.0 m, respectively.

An electric fan with high air volume is located behind the speaker in position A and was used as background noise.

An average SNR of the speech was about 18 dB. We used a microphone array with 9 channels (Fig. 2) and a pin

microphone to record speech in the distant-talking environment and close-talking environment, respectively.

B. Real reverberant speech with non-stationary noise

To evaluate our dereverberation method in a real environment with non-stationary noise, we recorded multi-channel

speech degraded simultaneously by music and reverberation. One hundred utterances from the JNAS corpus, uttered

by one male speaker seated on the chair labeled A in Fig. 2, were recorded by a multi-channel recording device. We

played monaural music continuously until one hundred utterances was finished. Other recording conditions were same

as real reverberant speech with stationary noise. An average SNR of the speech was about 3.4 dB.

Table 1: Conditions for recording.

microphone SONY ECM-C10
A/D board Tokyo Electron device

TD-BD-16ADUSB
recording room size [m] 7.1(D) × 3.3(W) × 2.5(H)
number of speakers 5 male speakers
number of utterances 100 utterances

(about 20 utterances per speaker)
sampling frequency 16 kHz
quantization bit rate 16 bits

Microphone array

D

BA

C E
180 cm

90 cm

45 

cm90 

cm

2.5 cm

1

3

7

2 648

5

9

Speakers / Positions
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Fig 2: Illustration of recording settings and microphone

array

3.2 Experimental results for reverberant speech with stationary noise

The speech recognition result is shown in Table. 2. To suppress the stationary noise, we proposed the combined use of

dereverberation method with stationary noise reduction based on GSS. The schematic diagram of this method is shown

in Fig. 3. For our dereverberation method, the parameters D, α, β, n were 6 (192 ms), 0.1, 0.15, and 0.1, respectively.

We investigated the best channel combination in the real environment and the best speech recognition performance

was obtained when channels 6, 7, 8, and 9 described in Fig. 2 were used. Therefore, this channel combination were

used for blind estimation of impulse response by MCLMS and delay-and-sum beamforming. In Table. 2, “CMN only”,

“GSS” and “GSS+MCLMS” are the results which using the conventional CMN, stationary noise reduction based

on GSS, combining GSS with our dereverberation method based on GSS by MCLMS, respectively. In this paper,

delay-and-sum beamforming was performed for all methods.

In Table. 2, the word accuracy rate for close-talking speech recorded in a real environment was 88.3%. “GSS” method

achieved a smaller improvement in recognition performance. On the other hand, speech recognition performance was

significantly improved by “GSS+MCLMS” method compared to both the “CMN only” and “GSS” methods for almost

all speakers. “GSS+MCLMS” method achieved an average relative word error reduction rate of 39.1% compared to

“CMN only”.

3.3 Experimental results for reverberant speech with non-stationary noise

The speech recognition result is shown in Table. 3. To suppress the non-stationary noise, we proposed the combined

use of dereverberation method with blind source separation method based on EFICA [4] by T-ABCD tool [5]. The
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Fig 3: Schematic diagram of our dereverberation method with stationary noise reduction
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Fig 4: Schematic diagram of our dereverberation method with non-stationary noise reduction

Table 2: Word accuracy for LVCSR using the real reverberant speech with stationary noise (%).

Speakers / Position CMN only GSS GSS+MCLMS
A 60.2 64.7 79.5
B 75.6 72.5 83.2
C 67.4 66.7 77.5
D 59.1 60.8 78.7
E 42.9 50.0 61.7

Average 60.9 62.9 76.2

Table 3: Word accuracy for LVCSR using the real reverberant speech with non-stationary noise (%).

Environments CMN only EFICA EFICA+MCLMS
w/o music 46.1 57.4 70.2
with music 12.4 30.4 49.1

schematic diagram of this method is shown in Fig. 4. Four channels (Mic. 6, 7, 8 and 9 in Fig. 2) were used for

blind estimation of impulse response by MCLMS, EFICA and delay-and-sum beamforming. In Fig. 3, “EFICA” and

“EFICA+MCLMS” are the results which using blind source separation based on EFICA, combining EFICA with our

dereverberation method based on GSS by MCLMS, respectively. The environment “w/o music” indicates the result

of the speech withiout music.

In Table. 3, the speech recognition performance of “CMN only” was drastically degraded owing to the noisy

reverberant conditions and the fact that CMN did not suppress the music and late reverberation. “EFICA” improved

the speech recognition performance significantly compared to “CMN only”. “EFICA+MCLMS” markedly improved

compared to “EFICA”, and outperformed than all the other methods. Our proposed method achieved an average

relative word error reduction rate of 41.9% compared to “CMN”.

4 Conclusion and Future Work
In this paper, we evaluated our dereverberation method based on GSS by MCLMS in real noisy reverberant envi-

ronment with stationary noise and non-stationary noise. To suppress the stationary noise and non-stationary noise,

we use a noise reduction technique based on GSS and a blind source separation based on EFICA, respectively. Under

the stationary noise, our dereverberation method with GSS achieved an average relative word error reduction rate of

39.1% compared to conventional CMN. Under the non-stationary noise of a background music, our dereverberation

method with EFICA achieved an average relative word error reduction rate of 41.9% compared to conventional CMN.

In the future, we intend to extend our proposed method to deal with real-world speech data including overlapping

speech that involves multiple persons speaking simultaneously.

References
[1] L. Wang, N. Kitaoka and S. Nakagawa, “Distant-talking speech recognition based on spectral subtraction by multi-channel

LMS algorithm, ” IEICE Trans. Information and Systems, Vol.E94-D, No.3, pp. 659-667, Mar. 2011.

[2] Y. Huang, J. Benesty and J. Chen, “Acoustic MIMO Signal Processing,” Springer, 2006.

[3] K. Odani, L. Wang, A. Kai, “Blind Dereverberation Based on Generalized Spectral Subtraction by Multi-channel LMS

Algorithm, ” Proc. of APSIPA ASC 2011, Oct. 2011.
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1 Introduction
In conventional speaker verification methods based on mel-frequency cepstral coefficients (MFCCs), only the mag-

nitude of the Fourier Transform in time-domain speech frames has been used. This means that the phase component

has been ignored. Importance of phase in human speech recognition has been reported in [1], [2]. Several studies have

invested great effort in modeling and incorporating the phase into the speaker recognition process [3].

Previously, Wang et al. proposed a speaker verification system using a combination of MFCCs and phase information

[4], [5] directly extracted from the limited bandwidth of the Fourier transform of the speech wave. However, problems

occurred in extracting the phase information because of the influence of the windowing position. Shimada et al.

proposed a new method to extract pitch synchronous phase information [6]. The experimental results showed that the

phase information was effective for speaker recognition under channel matched condition [4], [5], [6].

However, phase drastically changes between different channels. In [7], the experimental results indicated that the

speaker recognition performance based on phase information was drastically degraded under channel mismatched and

channel distortion conditions. To mitigate the influence of channel mismatch for phase information, joint factor analysis

(JFA) [8] instead of traditional GMM-UBM based on Gaussian mixture model (GMM) and Universal background model

(UBM) is used in this study. Recently, the JFA approach has become the active field for speaker verification. This

modeling proposes powerful tools for addressing the problem of speaker and channel variability in GMM framework.

Therefore, it is considered that the degradation of speaker verification performance using phase information under

channel mismatched condition would be mitigated partly. Furthermore, a combination of the phase information-based

JFA and MFCC-based JFA is also studied in this paper.

2 Phase Information Extraction
The spectrum S(ω, t) of a signal is obtained by DFT of an input speech signal sequence

S(ω, t) = X(ω, t) + jY (ω, t)

=
√
X2(ω, t) + Y 2(ω, t)× ejθ(ω,t). (1)

However, the phase θ(ω, t) changes according to the frame position in the input speech. To overcome the influence

of the phase response with respect to frame position, phases with the anchoring radian frequency ωb for all frames

are converted to a constant, and the phase with the other frequency is estimated relative to this. In the experiments

discussed in this paper, the anchoring radian frequency ωb is set to 2π× 1000 Hz. Actually, this constant phase value

of the anchoring radian frequency does not affect the speaker recognition result. Without loss of generality, setting

the phase with the anchoring radian frequency θ(ωb, t) to 0, we have

S′(ωb, t) =
√
X2(ωb, t) + Y 2(ωb, t)× ejθ(ωb,t) × ej(−θ(ωb,t)), (2)

whereas for the other frequency ω = 2πf , the spectrum on frequency ω is normalized as

S′(ω, t) =
√

X2(ω, t) + Y 2(ω, t)× ejθ(ω,t) × e
j ω
ωb

(−θ(ωb,t))

=
√

X2(ω, t) + Y 2(ω, t)× ejθ̃(ω,t)

= X̃(ω, t) + jỸ (ω, t). (3)

Then, the real and imaginary parts of (3) are given by

X̃(ω, t) =
√
X2(ω, t) + Y 2(ω, t)× cos

{
θ(ω, t) +

ω

ωb
(−θ(ωb, t))

}
, (4)

Ỹ (ω, t) =
√
X2(ω, t) + Y 2(ω, t)× sin

{
θ(ω, t) +

ω

ωb
(−θ(ωb, t))

}
(5)

and the phase information is normalized as

θ̃(ω, t) = θ(ω, t) +
ω

ωb
(−θ(ωb, t)). (6)

∗He is studying in the 1st year at the course of Systems Engineering of this graduate school (Master course).
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In a previous study, to reduce the number of feature parameters, we used phase information in a sub-band frequency

range only. However, a problem arose with this method when comparing two phase values. For example, for two

values π − θ̃1 and θ̃2 = −π + θ̃1, the difference is 2π − 2θ̃1. If θ̃1 ≈ 0, then the difference ≈ 2π, despite the two phases

being very similar to each other. Therefore, we mapped the phase into coordinates on a unit circle [4], [5], that is,

θ̃ → {cosθ̃, sinθ̃}. (7)

Using the relative phase extraction method that normalizes the phase variation with respect to frame positions,

the phase variation can be reduced. However, the normalization of phase variation is still inadequate. For example,

for a 1000 Hz periodic wave (16 samples per cycle for a 16 kHz sampling frequency), if one sample point shifts in

the cutting position (frame position), the phase shifts only 2π
16 , while for a 500 Hz periodic wave, the phase shifts

only 2π
32 with this single sample cutting shift. On the other hand, if the 17 sample points shift, their phases will

shift by 17·2π
16 (mod2π) = 2π

16 and 34π
32 , respectively, for the two periodic waves. Therefore, the values of the relative

phase information for different cutting positions are very different from those of the original cutting position. We have

addressed such variations using a statistical distribution model of GMM [4], [5].

If we could split the utterance by each pitch cycle, changes in the phase information would be further obviated.

Thus, we propose a new extraction method that synchronizes the splitting section with a pseudo pitch cycle.

With respect to how to unite the cutting sections in the time domain, the proposed method looks for the maximum

amplitude at the center around the conventional target splitting section of an utterance waveform, and the peak of

the utterance waveform in this range is adopted as the center of the next window. Fig. 1 outlines how to synchronize

the splitting section.

In this paper, however, we don’t discuss the comparison with traditional phase information and pseudo-pitch syn-

chronous phase information because the effectiveness of pseudo-pitch synchronous phase information has already been

shown in [6].

3 Joint Factor Analysis
Joint factor analysis is an effective model for speaker verification under channel mismatched conditon. In this model,

each speaker is represented by the means, covariance, and weights of a mixture of multivariate diagonal-covariance

Gaussian densities defined in some continuous feature space of dimensions. The GMM for a target speaker is derived

by adapting the universal background model (UBM) mean parameters. The basic assumption in JFA is shown as (8).

M = s+ c, (8)

where M is a speaker- and channel-dependent supervector, and s and c are speaker and channel supervectors, respec-

tively.

The first term in the right-hand side of (8) is modeled by supposing that if s is the speaker supervector for a

rondomly chosen speaker, then

s = m+Dz + V y, (9)

where m is the speaker- and channel-independent supervector (UBM), D is a diagonal matrix, V is a rectangular

matrix of low rank, and y and z are independent random vectors which have standard normal distributions. The

components of y and z are refered to the speaker and residual factors, respectively.

The channel-dependent supervector c, which represents channel effects in a speech, is supposed to be distributed

according to

c = Ux, (10)

where U is a rectangular matrix of low rank, and x has standard normal distribution. The components of x are refered

to the channel factors.

For scoring, we used the linear scoring method. The equation of linear scoring method is shown as (11).

ScoreJFA = (V y +Dz)∗ × Σ−1 × (F (test)−N(test)m−N(test)Ux), (11)

where ScoreJFA is the speaker verification score based on JFA, Σ is a covariance matrix, and N(test) and F (test) are

the zero and first order Baum-Welch statistics estimated from the feature of test utterances, respectively.

JFA realizes speaker verification that is robust for channel variabilities by two reasons, the division of the speaker

model to two models that represent speaker and channel characteristics respectively for modeling and the calculation

of the speaker verification score with removing channel variabilities for scoring.

A detailed description of JFA can be refered by literature [8].

4 Combination Method and Decision Method
MFCCs use only the magnitude of the Fourier Transform in time-domain speech frames, that is, phase component is

ignored. On the other hand, phase information ignores the magnitude of the Fourier Transform in time-domain speech

frames. Therefore, in this paper, the JFA score based on MFCCs is combined with the JFA score based on phase

2
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Table. 1: Conditions for speech analysis

sampling frequency 8 kHz

MFCC phase

window size 25 ms 16 ms

window shift 10 ms 5 ms

frequency range all 60-700 Hz

dimensions

60 (19 MFCCs + power, 24 (12 sin

their ∆ and ∆∆ and 12 cos

coefficients components

Table. 2: EERs for speaker verification (%)

GMM-UBM JFA

MFCC
male 7.71 6.97

female 7.38 3.44

phase
male 24.57 19.43

female 17.86 14.76

MFCC+phase
male 7.68 6.72

female 6.65 3.25

information. When a combination of the two methods is used to identify the speaker, the score of the MFCC-based

JFA is linearly coupled with that of the JFA based on phase information to produce a new score Scorecomb given by

Scorecomb = (1− α)ScoreMFCC + αScorephase, (12)

where ScoreMFCC and Scorephase are the score produced by MFCC-based speaker model and phase information-

based speaker model, respectively, and α denotes the weighting coefficients, which are determined empirically. The

combination score is then compared to the threshold in order to take the final decision.

5 Experiments
5.1 Experimental setup

The effect of phase information-based JFA for speaker verification under channel mismatched condition was evaluated

on the NIST 2003 SRE database [9]. The NIST 2003 SRE database consists of recordings of 356 speakers (149 males and

207 females), recorded in multiple conditions which include six transmission methods (CDMA, LAND, GSM, TDMA,

CELLULAR and UNK), multiple telephones, multiple places, etc. Almost all the data for every speaker were recorded

by different environments. Therefore, this speaker verification task is very difficult. We used gender-dependent UBMs

containing 1024 Gaussians for MFCC and 256 Gaussians for phase information, respectively.

To verify robustness of phase information-based JFA for channel variability, the speaker verification system using

JFA is compared with the system using traditional GMM-UBM in this paper. For GMM-UBM, GMMs containing

1024 Gaussians for MFCC and 256 Gaussians for phase information applying Maximum a posteriori (MAP) adaptation

from gender-dependent UBMs were used. Table 1 shows conditions for the speech analysis.

5.2 Experimental results

The equal error rates (EERs) for speaker verification are given in Table 2. Phase information-based JFA showed

the improvement of EERs of 5.14% for male and 3.10% for female compared to the system based on GMM-UBM.

The results show that phase information-based JFA has the moderate performance for speaker verification and the

degradation of speaker verification performance using phase information caused by speaker and channel variability

was mitigated partly. The combination of MFCC and phase information achieved a better result than MFCC-based

JFA which was one of the standard methods for speaker verification. This indicated that the phase information has

complementary nature with MFCC.

These results show that phase information is effective for the speaker verification, even under channel mismatched

condition. On the other hand, a previous study showed that phase information was not effective under channel

mismatched and channel distortion conditions [7]. The reason is that the influence of channel mismatch for phase

information is mitigated by using the channel variability robust JFA method. To verify this, we evaluated EERs for

speaker verification under transmission mode matched and mismatched condition, respectively. We think that channel

3



Table. 3: EERs for speaker verification under transmission mode matched and mismatched condition (%)

match mismatch

GMM-UBM JFA GMM-UBM JFA

MFCC
male 5.76 5.88 15.68 10.72

female 6.21 3.17 13.46 5.73

phase
male 21.11 16.18 41.45 37.07

female 11.22 10.91 42.06 34.48

MFCC+ male 5.33 5.00 15.73 10.83

phase female 5.25 3.20 12.50 5.72

characteristics varies drastically between different transmission modes. Here, transmission mode matched condition

means that the enrollment utterance and test utterance have same transmission mode, while transmission mode

mismatched condition means that the enrollment utterance and test utterance have different transmission mode. The

experimental result is given in Table 3. For both MFCC and phase information, the system based on JFA showed the

improvement of EERs compared to the system based on GMM-UBM under transmission mode mismatched condition.

From Table 3, it is obvious that the JFA can partly remove the influence of transmission mode mismatch for phase

information, but the influence is still large. Based on these results, the more improvement of the results shown in

Table 2 are expected by normalizing phase information for each transmission mode.

6 Conclusions and Future Work
In this paper, we conducted the speaker verification using pseudo-pitch synchronous phase information under channel

mismatched condition. To mitigate the influence of phase information under channel mismatched condition, a channel

variability robust speaker verification method was applied. Phase information-based JFA showed the improvement of

EERs of 5.14% for male and 3.10% for female compared to the traditional system based on GMM-UBM. We obtained

the better result than only MFCC by combining MFCC and phase information.

Phase information shows the lower EERs under transmission mode matched condition while the higher EERs under

transmission mode mismatched condition. As a result, in future work, we will try to normalize phase information for

each transmission mode.
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1 Abstract
This paper describes the outline of our new research theme on musical information processing. We focus on the

identification of the singers’ name of the acoustic signal of music data. The study just started this year for my graduate
work and some preliminary results based on a previous study[1] are reported. Remaining issues and future plans for
this study are discussed.

2 Introduction
Information about the singers’ name of the song is useful for music information retrieval (MIR). For example, if

the name of a singer can be identified without any information of the meta-data about songs, users can find songs
sung by a certain singer using a description of singers’ names. Most MIR systems are based on meta-data and assume
that the meta-data including artists’ names and song titles are available: if they were not available for some songs,
these songs could not be retrieved by submitting a query of their artists’ names. Furthermore, detailed descriptions of
the acoustic characteristics of singing voices can also play an important role in MIR systems because they are useful
for systems based on vocal timbre similarity by computing acoustical similarities between singers. Hence, a user can
discover new songs rendered by the singing voices they prefer.
In order to realize a music search based on the singers’ name, the problem of identifying the singers’ name of a song

from musical audio signals is addressed. The main problem with the identification of singers’ name is that a speaker
specific characteristic is influenced by accompaniment sound as well as variations in acoustic features of the singer’s
voice. Therefore, it is difficult to accurately identify the singer without coping with such problems.
Previous study by Fujihara et al.[1] has proposed two methods to solve the problem of mixed sound accompaniment.

They are “accompaniment sound reduction” and “reliable frame selection”. Using the former method, we can reduce
the influence of instrumental accompaniment. First, the harmonic structure of the melody is extracted from audio
signals, and re-synthesize the melody by using a sinusoidal model. The latter method is used to select reliable frames
that represent the characteristics of the singing voice. Fig.1 shows an overview of this method.

Fig.1. Overview of the baseline method[1].

3 Singer identification
Our approach of the singer identification system will be described.

∗He is studying in the 4th year at the course of Systems Engineering of this university.
†He has been an associate professor at Nagaoka University of Technology.
‡He has been an associate professor in the Faculty of Engineering at Shizuoka University.
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3.1 Accompaniment sound reduction

Previous study[1] proposed an accompaniment sound reduction method which is based on the extraction of the
harmonic structure of the melody. However, this method relies on a F0 estimation processing and it influences the
accuracy of this step. Therefore, we plan to adopt a different approach which doesn’t rely on an explicit F0 estimation
processing. Recently, non-negative matrix factorization (NMF), one of multivariate analysis methods is employed for
many signal processing applications. Nakano et al.[2] at Toyohashi University of Technology proposed a method for
speech recognition in mixed sound of speech and music based on a NMF approach. We are undertaking a joint study
with Toyohashi University of technology and implementing. The accompaniment sound reduction by applying this
NMF-based method.

3.2 Feature extraction

Detailed investigation of effective acoustic features for singer identification have not been performed so far. In the
previous study[1], experiments were conducted to compare the performance between two types of acoustic feature
parameters Mel Frequency Cepstral Coefficient(MFCCs) and Linear Prediction Mel Cepstral Coefficient(LPMCCs).
Previous work[3] has shown that an additional speaker feature “phase informations” improves the performance of
speaker identification and verification tasks. Thus, in order to express the individuality of the singer more robust,
we will investigate to incorporate the phase information and explore the optimal combination of phase information,
LPMCC and MFCC.

3.3 Reliable frame selection

Previous study[1] showed that a reliable frame selection is effective and we investigate to apply this method in
addition to the above mentioned methods. This step uses a vocal GMM λV and a non-vocal GMM λN . The vocal
GMM λV is trained on feature vectors extracted from the singing sections, and the non-vocal GMM λN is trained on
those extracted from the interlude sections. Given a feature vector x, the likelihoods for two GMMs, p(x|λV ) and
p(x|λN ), that correspond to how likely the feature vector x is a vocal part or a (non-vocal) instrument part, respectively
is computed. Therefore whether the feature vector x is reliable or not is determined by using the following equation:

log p (x|λV )− log p (x|λN )

reliable
≥
<

not−reliable

η (1)

where η is a threshold.
It is difficult to determine a universal constant threshold for a variety of songs because if the threshold is too high

for some songs, there are too few reliable frames to appropriately calculate the similarities. Therefore, the threshold
that is dependent on songs is determined so that the α% of all the frames in each song is selected as reliable frames.
It is expected that most of the non-vocal frames are rejected in this selection step.

3.4 Determining the singers’ name

For each singer to be identified, GMMλs(s is a singer’s label) will be trained in advance. X = {xt|t = 1, ..., T} is a
feature vector sequence chosen by the reliable frame selection. A singer’s name is determined based on the following
equation.

s = arg max
i

1

T

T∑
t=1

log p (xt|λi) (2)

4 Experiments
4.1 Experimental condition

So far, we have done a baseline experiment which does not employs both of two methods, which are “reliable
frame selection” and “accompaniment sound reduction.”, described in section 3.1 and 3.3. Experiments of singer
identification were conducted using the RWC Music Database: Popular Music (RWC-MDB-P-2001)[4]. 40 songs by
ten different singers (five were males and five were females) taken from the RWC-MDB-P-2001 were used1. The data
include four tracks per singer. Using these data, a four-fold cross validation was conducted. Three songs out of four
songs are used for training singer models for each singer, and the remaining song is used in the evaluation. The number
of mixtures for each singer’s GMM is 64. The covariance matrix of Gaussian densities assumes diagonal covariance.
Table 1 shows the conditions of feature extraction stage.

1This condition is identical to the previous work[1].
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TABLE.1. Feature extraction conditions.

#Channels 1

Sampling frequency 16kHz

Frame shift 10ms

Frame length 128ms

Window function Hamming

Preemphasis coef 0.97

Feature vector MFCC,LPMCC

Dimension
12(static coef only),

25(static coef + ∆ + ∆energy)

4.2 Result

The results of singer identification experiments are shown in Figure 2. The accuracy was defined by a ratio of the
number of correctly identified song to the number of songs used for evaluation.

Fig.2. Results of singer identification experiments.

The best result is attained by using the 12th-order MFCC feature parameter. In the previous study[1], the results of
a similar experiment using 12th-order MFCC and 12th-order LPMCC are shown. The accuracies were 53% for MFCC
and 55% for LPMCC, respectively. At the time of writing, it is not clear why our experiments attained better results
than previous study.

5 Progress situation and future work
Currently, we are in the process of doing the experiment of introducing accompaniment sound reduction and reliable

frame selection described in section 3.1 and 3.3. Our future plan is as follows:

• Implement the baseline methods of accompaniment sound reduction(section 3.1) and reliable frame selection(section
3.3).

• Compare approaches for accompaniment sound reduction: baseline method[1] v.s. NMF based method[2].

We are now trying to investigate the effectiveness of a new method which incorporates two novel methods proposed
in[2][3] to the singer identification framework described in section3. The accompaniment sound reduction method
proposed in previous study[1] is based on an explicit F0 extraction and therefore the effectiveness of this method
depends on the accuracy of the F0 extraction. On the other hand, F0-independent method[2]. In addition, we propose
a method to combine the phase information to the feature extraction(section3.2). We will continue to advance the
experiment to verify the usefulness of these methods.
Both of the previous work[1] and our experiment has used only 10 singers. We aim to be able to identify singers

with high accuracy even for further increase a number of singers.
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1 Introduction
Recently, we started to explore the applications of deep belief network (DBN) on two speech-related subjects;

speaker recognition task and voice activity detection (VAD) task. This paper describes the outline of deep belief

network (DBN) and a plan of application to the voice activity detection task in adverse environment for my graduate

work. Since my graduate work just started and related works have been surveyed, this paper introduces the main

points of a most related work by A. Mohamed et al.[1]. After that, a research plan for my graduate work is described.

2 Acoustic Modeling Using Deep Belief Networks[1] : Survey
Gaussian mixture models (GMM) are currently the dominant technique for modeling the emission distribution of

hidden Markov models (HMM) for speech recognition. In [1], it is shown that better phone recognition can be achieved

by replacing Gaussian mixture models by deep neural networks that contain many layers of features and a very large

number of parameters. It is shown that multilayer neural network is affected better by pre-training .

2.1 Learning the ganerative multi-layer model

(1) Restricted Boltzmann Machine

In order to learn the generative multi-layer model, consider the first two layers of binary RBM. Fig.1 shows that

Restricted Boltzmann Machine is a model represented by the input unit representing the observed values, hidden units

representing the features are bound to each other, as the two portions of the undirected graph.

Fig1. RBM configuration

The binary RBM, via the energy function, the weight of the individual units connected to the bias defines a probability

distribution for each state of the input unit and the hidden units. Set of energy for each state are shown as follows.

E(v,h|θ) = −
V∑

i=1

H∑
j=1

wijvihj −
V∑

i=1

bivi −
H∑
j=1

ajhj (1)

bi and aj is a bias term,、θ = (w,b,a) and ωij denotes the symmetric interaction term between input unit i and

hidden unit j . V and H are the number of visible and hidden units. The probability that an RBM assigns to a visible

vector v is

p(v|θ) =
∑

h e−E(v,h)∑
u

∑
h e−E(u,h)

(2)

Since there are no hidden-hidden connections, the conditional distribution p(h|v, θ) is factorial and is given by

p(hj = 1|v, θ) = σ

(
aj +

V∑
i=1

wijvi

)
(3)

where σ(x) = (1 + e−x)−1. Similarly, since there are no visible-visible connections, the conditional distribution is

factorial and is given by

p(vj = 1|h, θ) = σ

bi +
H∑
j=1

wijhj

 (4)

Exact maximum-likelihood learning is infeasible in a large RBM because it is exponentially expensive to compute

the derivative of the log probability of the training data. However, we will be able to learn effectively by learning
∗He is studying in the 4th year at the course of Systems Engineering of this graduate school (Bachelor course).
†He has been an associate professor at Nagaoka University of Technology.
‡He has been an associate professor in the Faculty of Engineering at Shizuoka University.



approximation called ”contrastive divergence”. We repeatedly update each weight wij using the difference between

two measured, pairwise correlations

∆wij ∝〈vihj〉data −〈vihj〉reconstruction (5)

The first term is the expected value of the frequency in which the unit i and hidden unit j input are on together. The

second term is the measured frequency with which and are both on when the visible vectors are ”reconstructions” of

the data vectors and the states of the hidden units are determined by applying (3) to the reconstructions.

(2)Reconstructions

This section describes the details on how to calculate the reconstructions that were introduced in the previous section.

First, the input data is applied to the input layer, and the values of hidden layer are calculated. ”Reconstructins” is

a calculation method to determine the values of the input layer again with the values of the hidden layer. We proceed

to update the weights using Equation (5) and this reconstruction.

Fig.2. how to calculate the reconstructions

(3)Construction of DBN

In this way, we can learn a hierarchical model stacked by RBM. A multilayer generative model that is pre-trained,

called Deep Belief Net (DBN), is constructed. At that time, throw away all the layers except the top layer, add a

layer of the label ”softmax” unit that represents the state of the HMM. Further, when dealing with the entire system

as a feed-forward neural network, this network is discriminatively fine-tuned by using backpropagation to maximize

the log probability of the correct HMM state.

2.2 Using DBN for phone recognition

In order to apply DBNs with fixed input and output dimensionality to phone recognition, we use a context window

of successive frames of speech coefficients to set the status of the visible units of the lowest layer of the DBN. Feed-

forward neural networks are learned so as to output a probability distribution that was estimated for the label of

the central frame. To generate phone sequences, the sequence of predicted probability distributions over the possible

labels for each frame is fed into a standard Viterbi decoder.

2.3 Experiments

Fig. 3 shows the results of two compared systems which was pre-trained (pretrain) or initiated from a random weight

(rand) respectively. A single hidden layer 2048 is almost no difference between pretrain and rand as shown in Fig.3.

Therefore, generative pre-training will not be affected much in a single hidden layer . However, the difference between

the two (rand and pretrain)is noticeable about increasing the number of layers. Thus, we can obtain the benefits

of prior learning by increasing the number of layers. Compared to the method described in this paper (Monophone

DBN) and the existing approaches (CD-HMM), PER (phone error rate) has been improved by approximately 7％.

Fig.3 Phone error rate on the core test set as a function of the number of hidden layers using randomly initialized and pretrained
networks.[1]
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3 Applying DBN for VAD task
3.1 Our approach

We started to study an VAD system which identifies of the speech segment and non-speech segments based on the

DBN model. In related works on large vocabulary speech recognition systems, the DBN exhibits the high accuracy

and robustness to various speech contents. Thus it is expected that the VAD system based on the DBN outperforms

the existing VAD approaches, when they applied to degraded speech in adverse environment. To train and test the

DBN model, it is necessary to label the speech data. The frame-level label of speech/non-speech given to the neural

network in correspond to the input feature vector, MFCC.

3.2 Voice activity detection using MLP

Before pursing with the goal of the VAD task with DBN, a VAD method based on multilayer perceptron (MLP),

is investigated as a baseline result. MLP is composed of more than one hidden layer, input layer, and output layer.

One or more units present in each layer of the MLP, which are connected in one unit present in the surrounding

layers. MLP used in this study is a neural network with one hidden layer as shown in Fig. 4. The main difference

between MLP and DBN is that the latter employs RBM for pretraining, though the former does not employ it. We

will compare the result in the same way as we described in the section 2.3.

3.3 Current progress and Future work

We intend to implement VAD using the aurora-front-end that is VAD algorithm which has the MLP[2]. Japanese

Electronic Industry Development Association (JEIDA) corpus is used as speech data.

Future work are the following three

• Train MLP as speech/non-speech classifier(baseline method)

• Train DBN-based speech/non-speech classifier

• Compare two approaches by evaluation experiments

Fig.4 A single hidden layer MLP
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Motivation 

• Conversational LVCSR system 
– To extend our effort from broadcast news and read 

speech recognition to conversational speech 
recognition 

– With our existing skills on planned speech recognition, 
explore new challenges on spontaneous speech 
recognition 

 
• Malay as a local language 

– Less attention is paid to Malay LVCSR yet it is the 
major language spoken by 14 million people 

– No Malay conversational speech corpus is distributed 
so far – sparse resource 

 



Objectives 

• Record and transcribe 50 hours of 
spontaneous conversational speech of 
Malay language 
– To provide training and evaluation material for 

the development of the Malay LVCSR system 
– To support the research of spontaneous 

speech recognition 
• Acoustic modeling – variation of speaker 

pronunciation, channel difference, emotion state, 
etc. 

• Language modeling – ungrammatical and 
fragmented sentence, disfluencies, etc. 



Specifications 

• 50 hours of spontaneous conversational speech in Malay 
language 
– Capture the speaker variation  

• More speakers for participation 
• Gender balance 
• Robustness 

– Expand the vocabulary 
• Prepare a topic pool for conversation 
• Collect more words that relate to a topic 

– Diversify the recording channel 
• Record speech from both the close-talk channel (clean speech) and 

telephone channel (noisy speech) simultaneously 
• Every utterance will be recorded in two conditions 

– Metadata tagging 
• Some metadata will be selected for annotation – to enhance the readability 

of the transcription 
 
 



Recording Setup 

• Record the clean speech and the telephone speech 
simultaneously from an emulated telephone conversation 
– Bidirectional communication 
– Collect speech from two conditions/channels 

 Speaker S1 

S1 calls S2’s phone 
(VoIP) 

Speaker S2 

S2 calls S1’s phone 
(VoIP) 

Recording Output: 
S1’s clean speech 
S2’s telephone speech 

S2’s clean speech 
S1’s telephone speech 

 



Recording Setup 

• Requirement: 
– 2 PCs, installed with 

• VoIP software and recording software 
• Soundcards that contain two recording devices (to record both the close-talk 

speech and the telephone speech simultaneously) 
– 2 phones 

• Procedure: 
– To establish the communication, S1 and S2 use the VoIP software 

(on the PC) to dial each other’s phone 
• S1’s speech is sent through the telephone network and listened by S2 
• S2’s speech is sent through the telephone network and listened by S1 

– Speech from both channels (close-talk and telephone) can be 
recorded simultaneously 

• S1’s PC records S1’s close-talk speech (from the microphone) and S2’s 
telephone speech (from the VoIP software) 

• S2’s PC records S2’s close-talk speech (from the microphone) and S1’s 
telephone speech (from the VoIP software) 

 



Transcription and Annotation 

• Word transcription 
– Verbatim 
– Utterances are time segmented based on sentence/sentence-unit 

(semantically complete segment) 
• Metadata annotation 

– Linguistic events: 
• Disfluencies – The unsmooth or incomplete segment 

– E.g. “This is a cat, I mean, a dog.” 
• Filled pauses – The hesitation sounds during speaking 

– E.g. “This is uh a dog.” 
• Partial words – The incomplete words pronounced 
• Code-switched words – The English (or other languages) words mixed 

with Malay utterances 
– Audio events: 

• Speaker’s noise, such as cough, breath, lip smack, laugh, sniff, etc. 
• Environmental noise, such as flipping papers, clicking mouse, knocking 

table, etc 
 



Transcription and Annotation 

• Transcription with Praat 



Demographic 

Singapore Malaysia Total Remarks 
Sessions 39 81 120 
Duration 16 hours 34 hours 50 hours Ave. 25min/session 
Speakers 
(F/M) 

45 (26/19) 54 (26/28) 99 (52/47) Each speaker 
averagely contributes 
20-40 min 

Topics 18 41 59 Ranges from hobby, 
travelling to social 
issues and politics. 
About 50min/topic 

Words 141K 294K 435K Speaking rate is 
about 150 words/min 
in general 



Corpus Analysis 

• Sentence segmentation 
– Utterances have been time-segmented to mark the 

boundaries of the sentences or the semantically complete 
sentence-unit. 

• A complete sentence 
“dia orang daripada pagi sampai malam judi tak habis habis.” 
“they gamble from day to night all the time.” (in English) 

• Back-channel (i.e. the respond to the active speaker) 
“hmm” 
“uh-huh” 

• Short sentence-unit 
“walaupun saya suka barang tu, hmm.”  
“althought I love that thing, hmm.” (in English) 

– The sentence/sentence-unit boundaries serve the ground 
truth for the task of sentence boundary detection 

• Does not fully support SU subtype detection task (i.e. statement, 
backchannel, question, incomplete) at the moment 

 
 



Corpus Analysis 

• Filled pauses and disfluencies 
– As the conversation is spontaneous, utterances are common 

unsmooth and contain filled pauses and (edit) disfluencies. 
– For edit disfluency, we followed the LDC’s SimpleMDE 

specification, the reparandum (deletable region) is tagged. 
• For example, 
“pasal kadang-kadang [tak boleh] tak boleh salahkan dia orang 

kalau dia orang masuk ini semua, [memang] memang bukan salah 
dia orang ah.” 

“sometimes (we) [cannot] cannot simply blame them for joining (the 
triad), [actually] actually it’s not all their fault.” (in English) 

 
“aktiviti di mana [mereka boleh bergaul] %uh pekerja asing ini boleh 

bergaul dengan %um orang awam.” 
“activitity where [they could socialize] %uh these foreign workers 

could socialize with %um the public.” 
 



Corpus Analysis 

• Filled pauses and disfluencies 
– Filled pause are labeled to a filler word that best pronounce 

the sound.  
• E.g., “err”, “um”, “uh”, etc. 
• They will be tagged (e.g. preceded with “%” sign) to be 

distinguished from other lexemes. 
• For example, 
“ini kerana %um penduduk %uh akan terasa terganggu.” 
“this is because %um the residents %uh will find themselves being 

disturbed.” (in English) 
 
“%uh saya melakukan diploma di politeknik. %um peperiksaan atau 

%um penilaiannya tidak bergantung pada satu peperiksaan saja.” 
“%uh I obtained my diploma from polytechnic. %um The examination 

or %um evaluation didn’t depend on only one examination.” (in 
English) 

 
 



Corpus Analysis 

• Filled pauses and disfluencies 
– Edit words account 3.7% of the total words in the corpus. 
– Filler word is the most frequent token that accounts 5.6% of 

the total words in the corpus 
 
– Supporting the research of edit disfluency detection and filler 

detection 
• Enhance the readability of the transcription 
• Recognition output could be used for higher level natural language 

processing task, such as understanding and translation 
 



Corpus Analysis 

• Code-switching 
– It is very common mixing English words into Malay conversation, 

especially in the informal talking. 
– For example,  

“$but $I $mean $maybe $his $luck ah eh. Nasib juga lah, nasib sendiri.” 
“but I mean maybe that was his lucky. It’s fate, his own fate.” (in English) 
 
“pada pandangan anda, sudah mencukupi $or terlalu banyak ke $or macam 

sikit ke?” 
“in your opinion, is it adequate or it’s excessive or too little?” (in English) 
 

– English words account 2.8% of the total words in the corpus and 
15.7% of the fallback vocabulary 

– Some most common English words in the corpus are “so”, “I”, 
“you”, “then”, “time”, “best”, etc. 

 



Corpus Analysis 

• Sociolinguistic difference 
– The following figure shows the unigram probability 

of the twenty most frequent words in the data 
collected in Malaysia and Singapore. 
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Corpus Analysis 

• Sociolinguistic difference 
– Speakers in Malaysia and Singapore have 

different preference in selecting words for 
conversation. 

• For example, Malaysia speakers used “tu” (that) almost 
three times more than Singapore speakers. 

– Perplexity evaluation 
• The difference of word distribution in both subsets can be 

reflected by the perplexity of the unigram language 
model (as follows). 

 Malaysia Singapore 
Malaysia 484.4 780.2 
Singapore 1025.8 467.8 



Corpus Analysis 

• Sociolinguistic difference 
– The combined corpus is robust to the sociolinguistic 

variation. The following shows the unigram and bigram 
perplexities after combining the corpus from both sides. 

Malaysia Singapore All 
Malaysia 484.4 1025.8 497.2 
Singapore 780.2 467.8 502.6 
All 565.9 793.9 498.9 

Malaysia Singapore All 
Malaysia 218.5 754.1 218.8 
Singapore 534.6 231.9 234.1 
All 293.0 512.3 223.7 



Summary 

• We have collected and transcribed 50 hours of Malay 
conversational spontaneous speech. Also additional 
annotations are tagged to some selected linguistic and 
acoustic events, in order to facilitate our future research. 
 

• The corpus will be used extensively for our research in 
conversational LVCSR, in the core area of 
– Pronunciation modeling 
– Disfluencies detection 
– Language modeling 
– Noise compensation 

 



   language diarization on code-switch speech 
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Speaker: dau-cheng lyu 



Outline  

• What is code-switch speech 
• Language recognition V.S. language diarization 
• Framework for language diarization 
• Experiment and Result 
• Conclusion 
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What is code-switch speech 
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• Code-switch speech: 
– refers to the switching of languages in speech 

– Mandarin-Taiwanese,  Taiwan 
– Mandarin-English, Singapore 
– Cantonese-English,  HongKong 
– English-Spanish, U.S.A.  

 
 



SEAME (South-East Asia English Mandarin) speech 
corpus 

1) 63-hour of conversational code-switch speech  
1) Interview and conversational recording 
2) 16k Hz, 16-bit sampling rate 

2) Collected from Singapore and Malaysia 
3) Over 80% mono-lingual segments are less one second 
4) 2.2 language switching within a utterance 
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Language Recognition (LID) 
• Given an utterance to identify language identity  

– Language identity is unknown 
– But language segmentation is known 

• Systems: 
– GMM-UBM, PRLM (Phoneme Recognizer followed by Language 

Model), P-PRLM (Parallel PRLM), P-PR-SVM and PPR (Parallel 
Phone Recognition),  

• Features: 
– Acoustic, prosodic, phonotactic, lexical and syntactic 

• Performance: 
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E. Ambikairajah, H. Li, L. Wang, B. Yin, and V. Sethu,  
"Language Identification: A Tutorial", in IEEE Circuits and Systems Magazine,  
Volume: 11, Issue: 2, pp.82-108, 2011 
 



Language Diarization 

• Task definition 
– Given a code-switch utterance to estimate language identity 

and language segmentation 
• Both language identities and segmentation are unknown   

– Similar to “speaker diarization” 
•  The task of determining "who spoke when?" 

• Challenges:  
• the start and end points of a language segment is unknown;  
• language segments are much shorter than those studied in the 

prior work  
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Language diarization on code-switch utterance 

• One of the goals 
– provide a language likelihood score as a soft language decision to 

support multilingual speech recognition system 

• Analysis on code-switch utterances 
– Very short monolingual segment  
– code-switch often occur between word, phrase or sentence 

• Idea 
– Combining acoustic and phonotactic feature 

• Complementary features for language recognition 
– Using segmental based language recognition 
– Using context information for back-end classifier 
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language diarization system for code-switch 
utterance (fusion system) 
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 Pj-k    … Pj-1         Pj        Pj+1             Pj+k  

C(j)1 

… … 

LMj-k …LMj-1        LMj         LMj+1  …  LMj+k 
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feature  
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code-switch  
speech 

phone  
sequence 

j-th 

Front-end classifier: GMM and phone recognition 
Back-en classifier: CRF (conditional random fields) 
 
Features for front end: LDA42 
Features for back-end: phone-based segment acoustic and phonetic features (LMj, Lej and Pj) 
 
Temporal features: concatenating variant length of left and fight combined feature,  
                                  C(j)k, j: the j-th phone segment,  
                                            k: the number of segments used in the left and right context 



language diarization system for code-switch 
utterance (individual  system) 

• Phonotactic language diarization system 
 
 
 
 

• Acoustic language diarization system 
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Corpus and experiential settings 
  

• SEAME corpus 

# of speakers # of 
utterances # of hours MAN(%) ENG(%) SIL(%) Others(%) 

training 
set 133  44,524  52.38 45 27 20 8  

dev. set 11 3,505 5.26 45 25 20 10  

test set 13 4,116 5.21 44 27 20 9  

•Feature:          LDA42, contains 5 continuous frames MFCC-based feature reduced  
                           dimension by using linear discriminant analysis (LDA) to 42   
•Training data: used to train front-end classifier, e.g. GMM and phone recognizer 
•Dev. data:        used to train back-end classifier, e.g. SVM, CRF 
 
•VAD                   (voice activity detection) is used to identify speech and  
                            silence segment. Performance of current VAD is 5.88% frame error rate. 
LID classifier:    two classes (Mandarin and English) 
 
Others:               will not be correctly identified  
                           (Other Languages, Discourse Particles, Other sounds, Fillers) 
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Two tasks 
• Language recognition 

– Test utterance: 
• Monolingual speech segment manually extracted from SEAME corpus 

– Evaluation: equal error rate (EER) 
– Comparison: 

• GMM, P-PRLM, GMM+PPRLM+SVM  

• Language diarization 
– Test utterance: 

• Code-switch speech 
– Evaluation: frame error rate (FER) 

• convert the current language identity for each phone segment into frame 
level 
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FER: frame error rate (%) 



Performance for language recognition 

• Divided test data into for categories according to duration 
• Obtained relative equal error rate reduction of 5.2%, 13.8%, 

15.1% and 17.9% 

12 

Proposed 
framework 

Other state 
of the art 
method 



• To evaluate the effect of segment duration to performance, 
we use variant length of context information and the 
corresponding LID outputs are L0, L1, L2, L3, and L4 

• Longer temporal information of features for back-end perform 
better 

• Combined feature (acoustic + phonotactic) performs best 

13 

Performance for language diarization  



Conclusion 
• introduce the language diarization task on code-switch 

utterances 
• Performance improvement 

– Proposed temporal features for back-end classifier to process very 
short monolingual segment in code-switch speech 

– Combined acoustic and phonotactic features  

• Proposed framework outperforms other state-of-the-art 
language recognition system 

• Achieved 14.7% frame error rate on language diarization 
task  
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Outline 

• Background 
 Noise robust speech recognition 

• Motivation 
 Noise conditioning approach  

• Noise conditioning (NC) – vector Taylor series (VTS) 
method 

• Experiments 
 Aurora2 task 

• Summary 
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Noise robust speech recognition 
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Problem: mismatch between  
training and testing conditions 

Training condition 

Testing condition 

Feature-based approach: 
(modify feature to reduce mismatch) 
+ Feature normalization: 
 CMN (Atal 1974) 
 CVN (Molau 2003) 
+ Clean speech estimation 
 Spectral subtraction (Boll 1979) 
 MMSE (Ephraim and Malah, 1984) 

Model-based approach: 
(estimate noisy acoustic model  
to represent better noisy features) 
+ Adaptive approach: 
 MAP (Gauvain and Lee 1994) 
 MLLR (Leggetter and Woodland 1995) 
+Predictive approach: 
 PMC (Gales 1995) 
 VTS (Acero et al. 2000, Jinyu Li 2009) 



Motivation 

• In this presentation, I will present an 
analysis of vector Taylor series (VTS) 
model compensation for non-stationary 
noise in speech recognition. 

• Reason: VTS method can handle well 
stationary noise, but suffer in non-
stationary noisy environment. 
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Motivation – VTS model compensation approach 
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+ 

Stationary noise model 

Clean speech model 

Noisy speech model 

(Moreno 1996, Gales 1998, Acero et al. 2000, Jinyu Li et al. 2009) 

acoustic state 

acoustic state 



Motivation – Issue in non-stationary noisy environments 
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+ 

Non-stationary noise model 

Clean speech model 

noisy speech model 

? 

? ? ? 

How to choose noise model? 

Noise spectrum 

Clean spectrum 

Noisy spectrum 

acoustic state 

acoustic state 



Noise Gaussian Mixture Model 
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• Complexity significantly increasing • Extra memory for acoustic model • Extra computation in decoding • Hard to optimize noise GMM parameters • Confusing and not optimal  to use all noise mixtures,  e.g. babble noise and car noise  
 babble noise mixture  may confuse  the ASR system where only have car noise. 
 
 

(Gales 1998) 



Proposed method - Noise conditioning approach 
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: noisy mel filter bank (FB) 

noise Noise mean non-stationary 
component 

Residual error 

Estimated 
non-stationary 
component  

Confidence score  
of noise estimate 

Enhanced  
noisy mel FB 

(Nguyen et al. 2012) 

Ideal enhanced noisy spectrum 

Noise spectrum 

Noisy spectrum 



Noise conditioning approach 
 
+ Try to reduce non-stationary 
characteristic of noise,  
i.e. ideal residual noise is stationary. 
+ Residual noise is effectively 
handled by VTS method. 
 
+ If noise estimate is wrong (or 
confidence score is low),  
should not enhance the features,  
i.e. keep the observed features. 
 

Clean features estimation approach 
 
+ Try to estimate clean feature,  
i.e. ideal residual noise is null. 
 
 
 
 
- If noise estimate is wrong,  
we do not know what to do,  
i.e. it is hard to estimate clean features. 
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Vs. 

Proposed method - Noise conditioning approach 



Noise conditioning – VTS framework 
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Noise 
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Experiments 

• Noise estimate simulation 
 (To isolate the effects of noise estimate in this 

examination) 
• Noise model for VTS method with/without the noise 

conditioning process 
• Speech recognition performance on AURORA 2 task 
• Aurora 2 task: English spoken digit data 
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Experiment - Noise estimate simulation 
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• Noise estimate is a smoothed version of true noise features. 
• Noise estimate captures the trend of the noise features. 
• The purpose is to isolate the effects of noise estimate in this examination. 
 



Noise conditioning – VTS framework 
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Noise 
Tracking 

Noise 
Conditioning 

Decoder 
Noisy  
Signal Text 

Clean 
HMMs 
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Update 
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Clean 
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noisy 
features + 

= 

Stationary noise model 

Clean speech model 

Noisy speech model 

Estimated 
non-stationary 
component  

Confidence score  
of noise estimate 

Enhanced  
noisy mel FB 

(Focus on analysis of effects of noise conditioning) 
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VTS NC-VTS Vs. 

Decoder 
Noisy  
features Text 

Clean 
HMMs 

VTS 
Update 
HMMs 

Clean 
HMMs 

+ 

= 

Stationary noise model 

Clean speech model 

Noisy speech model 

Noise 
Conditioning 

Decoder 
Noisy  
features Text 

Clean 
HMMs 

VTS 
Update 
HMMs 

Clean 
HMMs Enhanced 

noisy 
features 

+ 

= 

Stationary noise model 

Clean speech model 

Noisy speech model 

Considering model adaptation, the major difference is the noise model. 
Noise model is estimated using maximum likelihood algorithm [Jinyu Li et al., 2009] 
The more stationary the noise, the smaller the variance is. 

Baseline Comparison 



Experiments – Non-stationary characteristic Analysis 
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Histogram of ratio (Estimated noise variance / True noise variance) 
Noise model is estimated using maximum likelihood algorithm [Jinyu Li et al., 2009] 
(Smaller is better) 

Estimated 
non-stationary 
component  

Enhanced  
noisy mel FB 

(improve for low order cepstral features) 

(not improve for high order cepstral features) 



Experiments – Speech Recognition Performance 

16 

Estimated 
non-stationary 
component  

Enhanced  
noisy mel FB 

AURORA 2 task 
Training data: clean set 
Testing data: test set A 
Noise estimate simulation: smooth win-size=11 frames 

(significantly improve performance in non-stationary noisy environment) 

(not work in stationary noisy environment) 



Experiments – Speech Recognition Performance 
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Estimated 
non-stationary 
component  

Enhanced  
noisy mel FB 

AURORA 2 task 
Training data: clean  
Testing data: test set A 
Noise estimate simulation: smooth win-size=5,11,21 frames 

(known only the trend of the noise features) 

(known more local noise information) 



Summary  

• Present an analysis of noise conditioning method that 
aims to reduce the non-stationary characteristics of 
the noise, 

• Use noise conditioning method as a preprocessor of 
the VTS model compensation method, 

• Investigate the noise robustness potential of the 
noise conditioning –VTS method in non-stationary 
noisy environments. 

• Future work will focus on non-stationary noise 
tracking 
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Thank you! 
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