Efficiency improvement of a bearingless motor with powder iron core

D. Kanehara^{*}, J. Asama^{*}, T. Oiwa, A. Chiba^{**} (*Shizuoka University, Japan **Tokyo Institute of Technology, Japan)

Introduction

Bearingless motor

□ A motor which combines magnetic bearing function and rotation in the same unit

O No wear particles, Lubricant-free

□ Application : Chemical pumps, Blood pumps, etc Previous research

Proposed a compact bearingless motor (fig.1) □Succeeded in stable suspension and rotation $\Box Problem: Motor loss is large \Rightarrow Low efficiency (fig.3) | fig.4$

Iron loss reduction

Powder iron core

Dowder iron core is material which compresses insulated iron powder \Box High electrical resistance \Rightarrow Reduced eddy current

 \Rightarrow Reduced iron loss × Low permeability than bulk \Rightarrow Torque and force are reduced?

 \Rightarrow Investigation of motor

performance with powder iron core

Research objective

Improvement of efficiency with powder iron core

Proposed bearingless motor

Structure

CRotor: Two iron disks (with PM) and a PM ring $\Box Stator: C-shape \Rightarrow Reduction motor height$ □ Two kind of windings

: Suspension and motor are combined

Test machine with powder iron core

- Use powder iron core for stator core of proposed bearingless motor
- Stator core is molded with epoxy resin
 - ⇐ Because powder iron core is very brittle

 \Box Rotor motion range in radial direction is ± 0.25 mm

Fig.1 Proposed structure Magnet suspension principle

CRadial direction: Suspension force is generated by superposition of PM flux and suspension flux **Radial position (suspension force) is actively regulated** Axial/tilting direction : Passively stable with magnetic attractive force

Power consumption with no load

□ Total: 74% reduction (Motor loss reduction is large) \Box Iron loss : 85% reduction \Rightarrow Eddy current is reduced

 \Box Torque (k_T[mNm/A]) at 3000rpm : Powder > Bulk ⇐ Eddy current works as brakes Efficiency: 25% improvement (at 3000rpm)

Power consumption with no load

□ Motor loss is 70% or more of total loss □ Iron loss is 60% of motor loss \Leftarrow Eddy current

It is effective to use powder iron core for proposed bearingless motor to improve efficiency

Force Interference Reduction with Winding Configuration in a Homo-polar Bearingless Motor

Y. Yamamoto¹, J. Asama¹,

¹ Shizuoka University, Japan.

miniaturization of an error angle (Fig.3).

Motor

Motor

Coreless

Coil

+

Passive Magnetic Bearing

(PMB)

Fig.2 Proposed model

Study objective

 Realize of one-DOF actively positioned <u>bearingless motor</u> only one three-phase inverter.

Magnetic bearing

Yoke

Permanent

Y&→X Magnet (PM)

Rotor

Stator

Configuration & Drive Principle

Configuration (Fig.2)

• One three-phase inverter $\Rightarrow \bigcirc Small size$

• 6-pole, 9-slot

Coreless motor

Application Cooling fan

Position control & Rotation (Fig.3,4)

- Position control(Z) : d-axis current (i_d)
- Rotation(θ_{7}) : q-axis current (i_a)
 - $\begin{bmatrix} i \\ i \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Rotation angle () Fig.6 Analysis result of suspension force

Test Model

- Axial length : 26mm (Fig.8)
- Rotor diameter : 49mm (Fig.9)
- : 1.0mm Magnetic gap

Fig.8 Prototype

Fig.7 Analysis result of torque

60

Fig.9 Rotor (Reverse)

- 4µm, 0.07mm, and 4.9mrad.

Fabrication of a three-phase votage source inverter and its drive

Y. Fujii, J. Asama (Shizuoka University, Japan)

Introduction

Conventional AC motor control

Supply of AC by commercial power
Variable frequency , ×Variable voltage

Solution

Inverter control by PWM(pulse width modulation) control

Variable voltage Variable frequency(VVVF) controlPerformance of inverter

Important fabrication of drive circuit

Goal of Research

Amplitude of modulation wave

Fig.5. small amplitude of modulation wave

Smaller amplitude of modulation wave than Fig.4.
 Amplitude of approximation sinusoidal wave
 Proportion to amplitude of modulation wave

Principle of Drive Circuit

Fabrication of three-phase voltage source inverter and its drive circuit

Outline of Inverter

Forward Convert Circuit: rectifier from AC to DC
 Reverse Convert Circuit : from DC to AC
 Control Circuit : transmission of PWM signal
 Drive Circuit : switching semiconductor device

PWM(Pulse width modulation) Control

Fig.2.Variable Load voltage by switching

-E/2

< Example>
focus on U-phase $\Box Tr1=ON \lor Vu=E/2$ $\Box Tr2=ON \lor Vu=-E/2$

Comparison of carrier wave and modulation wave in control circuit In case of Modulation wave =Sinusoidal modulation wave

Output of approximation sinusoidal wave

Fig.4. Principle of PWM control

Fig.9. Fabricated Drive Circuit

Fig.10. Confirmed Three Phase Wave

Conclusion

Fabrication of inverter and its drive circuit
Confirmed Three-phase wave