SSSV成果報告

三浦•臼杵研究室 M1 50230040 高田 智裕

留学交流参加者

マレーシア大学トレンガヌ校

漁師や海洋科学から始まった学校で, 度々の改名と学科の増設を経て,今に至る. 美しい海に面し,豊かな自然に恵まれた土地に建つ.

留学交流参加者

Senior Lecturer

R. U. Gobithaasan

Ph.D course student

Karpagavalli Ramamoorthy Wo Mei Seen Yip Siew Wei

M. S. course student
 Yee Lye Pui

留学交流会日程

- 平成14年1月24日(金)~31日(金)
 - 24日(金): 関西空港より入国・顔合わせ
 - 25日(土): 浜名湖エリア観光
 - 26日(日): 駅周辺の散策
 - 27日(月): 研究会
 - 28日(火): 交流会•勉強会
 - 29日(水): 静岡文芸大学訪問
 - 30日(木): 研究打ち合わせ
 - 31日(金):帰国

研究会内容

• マレーシア大学, 静岡大学から, それぞれ4名ずつ発表.

静岡大学発表者

- 宇野 大
- 渋谷 大
- 萬立 洋次郎
- 高田 智裕

Paper 1:
 Interactive Design of Generalized
 Log-Aesthetic Curves.
 R. Karpagavalli, R.U. Gobithaasan
 (University Malaysia Terengganu)

Paper 2:
 3D Measurement and Reconstruction using Microscopic Depth images.
 Masaru Uno, Shin Usuki, Kenjiro T. Miura (Shizuoka University)

Paper 3:

The Extension of Log-Aesthetic Planar and Space Curves.

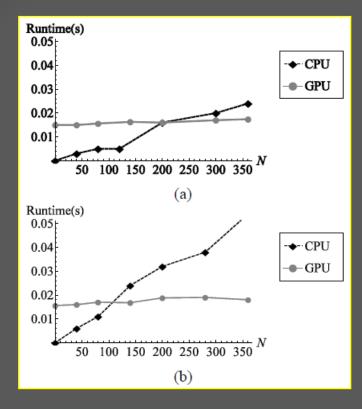
L. P. Yee, R. U. Gobithaasana (University Malaysia Terengganu)

• Paper 4:

Robot Trajectory Generation with Smoothly Changing Curvature Using the Clothoid Spline. Shibuya Dai, Shin Usuki, Kenjiro T. Miura (Shizuoka University)

Paper 5:
 GPU Acceleration of Runge Kutta-Fehlberg
 Wo Mei Seen, R.U. Gobithaasan
 (University Malaysia Terengganu)

Paper 6:
 Velocity Calculation of 2D Geometric Objects
 by Use of Surface Interpolation in 3D
 YojiroMandachi, Shin Usuki, Kenjiro T. Miura (Shizuoka University),
 Miki Yumoto, Minoru Iida (Yamaha Motors)


- Paper 7:
 Using Log-Aesthetic Curves for Shape
 Completion Problem.
 Yip Siew Wei, R.U. Gobithaasan
 (University Malaysia Terengganu)
- Paper 8:
 Improvement in Standing Wave Contrast of Structured Illumination Microscopy
 Tomohiro Takada, Shin Usuki and Kenjiro Miura (Shizuoka University)

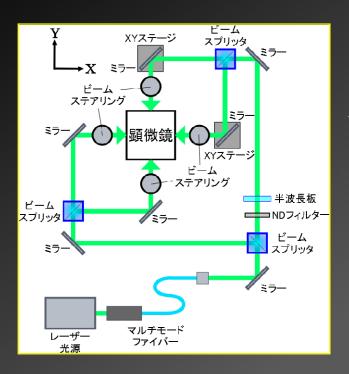
Paper 5:
 GPU Acceleration of Runge Kutta-Fehlberg

微分方程式の解法のひとつである, ルンゲ・クッタ-フェルバーグ法 をGPUを用いて高速化する.

高い繰り返し数において、 GPUの有効性を確認.

Paper 8:

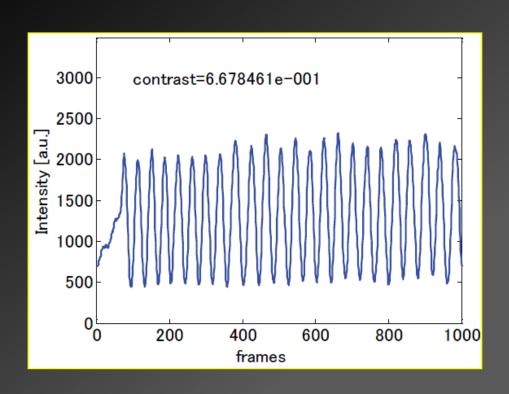
Improvement in Standing Wave Contrast of Structured Illumination Microscopy


半導体の高集積化、多層化に伴い、高速で高分解能な三次元計測が求められている.

変調照明顕微法に着目

問題点:

特有の干渉ノイズにより、製品検査などの工業応用分野への適用は困難.



干渉ノイズは光源に用いるレーザが 不必要な干渉を起こすことに由来

変調照明の生成法を新たに提案し、低干渉性の光源を用いることで、ノイズを抑制した顕微鏡系を構築.

変調照明の生成難度が上がり、 照明のコントラストが低下.

実験系の要素を評価, 最適化し,再構築する ことで変調照明を生成.

66%程度のコントラストで、明瞭な照明の生成を確認.

新たな照明により、干渉ノイズの抑制を達成.

文化芸術大学訪問

的場 ひろし 教授 研究紹介

> インタラクションデザイン, 情報処理,メディア産業論, ユニバーサルデザイン など

文芸大 展示ルーム 見学

研究室交流会

研究室交流会

